The celebrated FedAvg algorithm of McMahan et al. (2017) is based on three components: client sampling (CS), data sampling (DS) and local training (LT). While the first two are reasonably well understood, the third component, whose role is to reduce the number of communication rounds needed to train the model, resisted all attempts at a satisfactory theoretical explanation. Malinovsky et al. (2022) identified four distinct generations of LT methods based on the quality of the provided theoretical communication complexity guarantees. Despite a lot of progress in this area, none of the existing works were able to show that it is theoretically better to employ multiple local gradient-type steps (i.e., to engage in LT) than to rely on a single local gradient-type step only in the important heterogeneous data regime. In a recent breakthrough embodied in their ProxSkip method and its theoretical analysis, Mishchenko et al. (2022) showed that LT indeed leads to provable communication acceleration for arbitrarily heterogeneous data, thus jump-starting the $5^{\rm th}$ generation of LT methods. However, while these latest generation LT methods are compatible with DS, none of them support CS. We resolve this open problem in the affirmative. In order to do so, we had to base our algorithmic development on new algorithmic and theoretical foundations.
translated by 谷歌翻译
在本文中,我们提出了一种称为MINIBATCH随机三点(MISTP)方法的新的零订单优化方法,以在只有目标函数评估的近似值的情况下解决无约束的最小化问题。它基于最近提出的随机三点(STP)方法(Bergou等,2020)。在每次迭代中,MISTP以与STP相似的方式生成一个随机搜索方向,但是仅根据目标函数的近似而不是其精确评估选择下一个迭代。我们还分析了方法在非凸和凸病例中的复杂性,并评估其在多个机器学习任务上的性能。
translated by 谷歌翻译
与训练数据中心的训练传统机器学习(ML)模型相反,联合学习(FL)训练ML模型,这些模型在资源受限的异质边缘设备上包含的本地数据集上。现有的FL算法旨在为所有参与的设备学习一个单一的全球模型,这对于所有参与培训的设备可能没有帮助,这是由于整个设备的数据的异质性。最近,Hanzely和Richt \'{A} Rik(2020)提出了一种新的配方,以培训个性化的FL模型,旨在平衡传统的全球模型与本地模型之间的权衡,该模型可以使用其私人数据对单个设备进行培训只要。他们得出了一种称为无环梯度下降(L2GD)的新算法,以解决该算法,并表明该算法会在需要更多个性化的情况下,可以改善沟通复杂性。在本文中,我们为其L2GD算法配备了双向压缩机制,以进一步减少本地设备和服务器之间的通信瓶颈。与FL设置中使用的其他基于压缩的算法不同,我们的压缩L2GD算法在概率通信协议上运行,在概率通信协议中,通信不会按固定的时间表进行。此外,我们的压缩L2GD算法在没有压缩的情况下保持与香草SGD相似的收敛速率。为了验证算法的效率,我们在凸和非凸问题上都进行了多种数值实验,并使用各种压缩技术。
translated by 谷歌翻译
在这项工作中,我们提出了新的自适应步长策略,以改善几种随机梯度方法。我们的第一种方法(停止)基于经典的Polyak步长(Polyak,1987),是随机优化SPS(Loizou等,2021)的最新开发的延伸,我们的第二种方法,以及我们的第二种方法表示毕业生,通过“随机梯度的多样性”重新缩放步长。我们对这些方法进行了理论分析,以实现强烈凸平的光滑功能,并表明尽管随机梯度随机梯度,它们仍享有确定性的速率。此外,我们证明了自适应方法对二次目标的理论优势。不幸的是,两个停止和毕业生都取决于未知数量,这仅适用于过度散光模型。为了解决这个问题,我们放弃了这种不希望的依赖性,并重新定义了停止和毕业生的停止和毕业。我们表明,这些新方法在相同的假设下线性收敛到最佳解决方案的邻域。最后,我们通过实验验证来证实我们的理论主张,这表明GRAD对于深度学习优化特别有用。
translated by 谷歌翻译
我们研究基于{\ em本地培训(LT)}范式的分布式优化方法:通过在参数平均之前对客户进行基于本地梯度的培训来实现沟通效率。回顾田地的进度,我们{\ em识别5代LT方法}:1)启发式,2)均匀,3)sublinear,4)线性和5)加速。由Mishchenko,Malinovsky,Stich和Richt \'{A} Rik(2022)发起的5 $ {}^{\ rm th} $生成,由Proxskip方法发起通信加速机制。受到最近进度的启发,我们通过证明可以使用{\ em差异}进一步增强它们,为5 $ {}^{\ rm th} $生成LT方法的生成。尽管LT方法的所有以前的所有理论结果都完全忽略了本地工作的成本,并且仅根据交流回合的数量而被构成,但我们证明我们的方法在{\ em总培训成本方面都比{\ em em总培训成本}大得多当本地计算足够昂贵时,在制度中的理论和实践中,最先进的方法是proxskip。我们从理论上表征了这个阈值,并通过经验结果证实了我们的理论预测。
translated by 谷歌翻译
受到Mishchenko等人(2022)的最新突破的启发,他们首次表明局部梯度步骤可以导致可证明的通信加速,我们提出了一种替代算法,该算法获得了与他们的方法相同的通信加速度(Proxsskip)。但是,我们的方法非常不同:它基于Chambolle和Pock(2011)的著名方法,并具有多种不平凡的修改:i)我们允许通过适当的强烈凸出功能的代理操作员进行不精确的计算。基于梯度的方法(例如,GD,Fast GD或FSFOM),ii)我们对双重更新步骤进行仔细的修改,以保留线性收敛。我们的一般结果为强凸孔座鞍点问题提供了新的最先进率,其双线性耦合为特征,其特征是双重功能缺乏平滑度。当应用于联邦学习时,我们获得了Proxskip的理论上更好的替代方案:我们的方法需要更少的本地步骤($ O(\ kappa^{1/3})$或$ o(\ kappa^{1/4})$,与Proxskip的$ O(\ kappa^{1/2})$相比,并执行确定性的本地步骤。像Proxskip一样,我们的方法可以应用于连接网络的优化,我们在这里也获得了理论改进。
translated by 谷歌翻译
沟通是大规模机器学习模型的分布式培训中的关键瓶颈之一,而交换信息(例如随机梯度或模型)的有损压缩是减轻此问题的最有效工具之一。研究最多的压缩技术之一是无偏压缩操作员的类别,其方差为我们希望压缩的向量的平方规范的倍数界定。根据设计,该方差可能保持较高,并且只有在输入向量接近零时才会减少。但是,除非被训练的模型过度参数化,否则我们希望在经典方法的迭代(例如分布式压缩{\ sf sgd}的迭代术中,我们希望压缩的矢量有A的理由,对收敛产生不利影响速度。由于这个问题,最近提出了一些更详尽且看似截然不同的算法,目的是规避了这个问题。这些方法基于在我们通常希望压缩的向量和一些辅助向量之间压缩{\ em差异}的想法,这些辅助向量会在整个迭代过程中变化。在这项工作中,我们退后一步,并在概念上和理论上开发了研究此类方法的统一框架。我们的框架结合了使用无偏和有偏的压缩机压缩梯度和模型的方法,并阐明了辅助向量的构造。此外,我们的一般框架可以改善几种现有算法,并可以产生新的算法。最后,我们进行了几个数字实验,以说明和支持我们的理论发现。
translated by 谷歌翻译
在本说明中,我们建立了种群极限的下降引理,反映了Stein变异梯度方法〜(MSVGD)。此下降引理不依赖MSVGD的路径信息,而是对镜像分布的简单假设$ \ nabla \ psi _ {\#} \ pi \ propto \ propto \ exp(-v)$。我们的分析表明,MSVGD可以应用于非平滑$ V $的更广泛的约束采样问题。我们还研究人口的复杂性限制了MSVGD的尺寸$ d $。
translated by 谷歌翻译
梯度压缩是一种流行的技术,可改善机器学习模型分布式培训中随机一阶方法的沟通复杂性。但是,现有作品仅考虑随机梯度的替换采样。相比之下,在实践中众所周知,最近从理论上证实,基于没有替代抽样的随机方法,例如随机改组方法(RR)方法,其性能要比用更换梯度进行梯度的方法更好。在这项工作中,我们在文献中缩小了这一差距,并通过梯度压缩和没有替代抽样的方法提供了第一次分析方法。我们首先使用梯度压缩(Q-RR)开发一个随机重新填充的分布式变体,并展示如何通过使用控制迭代来减少梯度量化的方差。接下来,为了更好地适合联合学习应用程序,我们结合了本地计算,并提出了一种称为Q-Nastya的Q-RR的变体。 Q-Nastya使用本地梯度步骤以及不同的本地和全球步骤。接下来,我们还展示了如何在此设置中减少压缩差异。最后,我们证明了所提出的方法的收敛结果,并概述了它们在现有算法上改进的几种设置。
translated by 谷歌翻译
尽管计算高昂和沟通成本,牛顿型方法仍然是分布式培训的吸引人选择,因为它们对不良条件的凸问题进行了稳健性。在这项工作中,我们研究了通信压缩和曲率信息的聚合机制,以降低这些成本,同时保留理论上优越的局部收敛保证。我们证明了Richtarik等人最近开发的三点压缩机(3PC)类。 [2022]对于梯度交流也可以推广到Hessian通信。该结果开辟了各种各样的沟通策略,例如承包压缩}和懒惰的聚合,可用于压缩过高的成本曲率信息。此外,我们发现了几种新的3PC机制,例如自适应阈值和Bernoulli聚集,这些机制需要减少通信和偶尔的Hessian计算。此外,我们扩展和分析了双向通信压缩和部分设备参与设置的方法,以迎合联合学习中应用的实际考虑。对于我们的所有方法,我们得出了与局部无关的局部线性和/或超线性收敛速率。最后,通过对凸优化问题进行广泛的数值评估,我们说明我们的设计方案与使用二阶信息相比,与几个关键基线相比,我们的设计方案达到了最新的通信复杂性。
translated by 谷歌翻译